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Overview




Physics-based Audio vs. Data-centred Approaches

A distinguishing feature of physics-based audio: it is algorithmic, so no samples are used.

« “pure” PM codes are tiny (kilobytes usually)...no “data”

« computational/memory costs: highly dependent on target system

» parameter sets: small. Sometimes hard to obtain!

« can be extended to include samples (e.g., key clicks)

« always operate as recursions at an audio sample rate---feedback/IIR systems

Distantly related to “procedural audio,” also algorithmic...
i = —w?u u(t) = Acos(wt + @)

“Equation based” “Solution based”

No training: the deterministic mathematical model (and not the sound it generates) is the “ground truth”...




Physics-based Audio

|dea: obtain high-quality “natural” acoustic sound through simulation. Main system families:

VirtGiffisesistics




System Overview
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ODE system PDE system

Generally: coupled systems of differential equations u= f(u)

Initial conditions: always zero in practice. Instead: physical models activated using external driving functions

u = f(i w(U) = U u=fu+gt) ul0)=0

Loss: generally very low, but of high perceptual significance! “High-Q” oscillatory systems...




State Space Forms and Nonlinearities

Usually: breakdown of system into a significant linear part and an additional nonlinearity
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Nonlinear quasi-state space form: u = Au + fNL (u) + bx y = g(u)

Types of nonlinearity:

« polynomial (usu. cubic): geometric nonlinearity in strings, membranes, plates
« one-sided power laws: collisions (frets, snares, strikes, plucks, reed beating)
« square root (Bernoulli): wind instruments

« signum (Coulomb friction): bowed string instruments

Sometimes differentiable...sometimes not continuously differentiable, or even continuous.




Classic Numerical Simulation Approaches

1962: vocal tract (Kelly + Lochbaum)
1970: FDTD string (Ruiz) Dynamical System
1979: mass spring r
1985: modal synthe:
1986: digital wavegt

/P\

Traveling Wave Solution

Delay Line Implementation

Limited i
computational Current Time Step &
power-> i
simplified

physics... Sound Output




1990s: musical acoustics investigations of complex
instruments:

Timpani drum: Rhaouti, Chaigne + Joly, JASA, 1999

Mainstream time-domain methods---
finite difference time domain.

3D acoustic field modelling!

Very large computation...offline!




In sound synthesis and virtual acoustics,
different manifestations:

Classic: Excitation/resonator interaction

Coupled Systems: Modular
instrument construction

Multiphysics: Heterogeneous coupled
systems

Complex Systems: Single problems with
distinct timescales, or strong nonlinearities

System Types
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Wind Instruments

Coupled components: Main bore +
bypass tubes (valves) or toneholes +
excitation mechanism

Easily real time. Typical sounds...
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(T. Mudd, “Brass Cultures”, 2020)
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Guitars
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Coupled components:
strings + frets + fingers
(+ body/acoustic field)

Real time (without
body/field)

(G. Sassoon, “Multiverse™, 2021)



Room Modelling

Industry standard: geometrical
acoustics (e.g. ray tracing)---
neglects diffraction!

Full wave-based solution is
complete (audio rate).
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At audio rates---a very large
computational problem (offline
on GPU only)




3D Percussion Instruments: Multiphysics

Multiple instruments “embedded” in acoustic field; multichannel (spatialized) output possible

@

Gongs: Q'; Timpani: Qé




Building a Sound: the Snare Drum

@
Membrane only Q‘@/o snare druvteniveataggeitrosnares Q:% With drum cavity Q%
D



Modular Environments

Toolboxes for modular construction of
new instruments...
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(G. Delap, “Orbit”, 2009)




Electromechanical Reverbs

Classic electromechanical reverbs---such as the spring:




Case Study: String Vibration




String Models: Model parameter space

The simplest nontrivial physical model. Under lossless, linear, unforced conditions, system described by
four “physical” parameters:

p: mass density T. tension r: radius L: length

Partial differential equation model: describes transverse displacement u(x,t) in time t, and spatial coordinate x:

0°u T 0%u
ot2  pmr? 0x? x €101

But: this space is redundant...in fact, need only one “perceptual” parameter:

2 2 T
d“u 0“u x € [01] y =

2 I
gtz ' 9x2 prr2L?

Some “preparatory” work necessary in terms of scaling/nondimensionalization in order to get to the minimal
parameter set. Esp. important if using ML methods for fitting parameters!




String Models: Control parameter space

The control aspect also requires a parameterization---much harder!

y y o .
d-u _ 2 d“u +8(x — x)f x;: excitation location
Ot2 |4 0x2 L f(t): excitation function

Now: an entire function is

required. Pluck:
Simple parameterized
forms:

Strike:
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Adding Stiffness

— =y?— f: stiffness

pitch and timbre both change...
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Losses

0°u ,0%u 0%u
gtz ¥ ax2 P 9x*
0gp: loss parameter 01: frequency-dependent loss parameter
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Example: nonlinear string vibration
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amplitude-dependent
nonlinearity
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nonlinear




“With just one musician, you can really do an unlimited number of things on the inside of
the piano if you have at your disposal an exploded keyboard.” (John Cage)

2-3 additional parameters required here...
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Computing
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Time-stepping Methods

Time stepping methods: the classic way of proceeding.
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Run-time Loop

Suppose we have a linear system (very unrealistic!). Any physical modeling synthesis method will look like
an audio rate recursion (state space):

for n=1:final time step

X (%, KXxliast, #pb*uld; the (iurrent “state.”
inpu
= c*x .
! ' the “system.”

selects input location
selects output location

Qo pe X

X _last = x;
Stele!

A key parameter: state size or # degrees of freedom N...determines computational cost!

A, b, c generally extremely sparse (comes from “local” nature of physical laws)

Nonlinear case: update line above replaced by nonlinear algebraic equations to solve...

Sometimes---can arrive at an “explicit” nonlinear update; can interpret as a large, possibly nonlinear |IR
filtering operation...with major stability considerations!




Audio Rate Simulation

Sound Spectrum
Need to capture all

information up to f, = 20 kHz

Bound on time step T:

T < 1/2f,= 25 s

But: computational cost generally scales as (1/T)P for some integer p = 2,3,4...

Thus, ideally: T o
= c

Some standard notions in simulation need to be viewed in this light...more later!




Computational Requirements and Factors

Many different factors at play when grappling with the question of computational efficiency:

State memory
Additional memory (coefficients, connectivity graphs)

Raw operation count

Linear systems: Sparsity? Other structure to be exploited?

Nonlinear systems: iterative methods: stopping criterion + bit depth for audio?
Parallelizability

Single vs. double precision?




Weyl's Law (1911)

A means of counting the number of degrees of freedom (twice number of “modes”) for a given system.

E.g., room, volume V m3, wave speed ¢ m/s.

Number of modes N of frequency < f;; N(f,) = — Geometry independent

Weyl's Law

Rigid

Rigid: Weyl's Conjecture
Pressure-release

Pressure-release: Weyl's Conjecture

4V >  mAf?
3¢3 T 4c?

BCs: lead to higher order effects (dep. on bounding area A): N(fc) —




Audio-rate Simulation: Problem Sizes

Weyl's Law: tells us # DOF N required, and thus minimal state memory requirement. Highly
system/dimension dependent! To get to audio rate, f,= 20 kHz

Tube I I \embrane
String I B P|ate Rooms S

| | | | | | | | | | | .
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100 101 102 103 104 (IE 106 107 108 10° 1010

Implications for neural audio rate synthesis...




Order of Accuracy
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Example: Simple Harmonic Oscillator

The most basic oscillatory system: the Simple Harmonic Oscillator (SHO): x = 27Tf0 [

Solutions: pure sinusoids at frequency f,.

Audio rate simulations with f, = 1/T = 44.1 kHz:

2nd order accurate method
Exact (Verlet)

£, =1 kHz: Q:g; Q:&
fo = 4 kHz: Q:E ﬂ:&

0 1
-1 0

E

4t order accurate method

(classic Runge Kutta)

Major implications for low-loss systems (most musical instruments and rooms...)




Numerical Instability

A major problem in audio-rate acoustic simulation...low loss, strong nonlinearities, long duration simulations.

Linear systems: spurious exponential solution growth:

Sample number:426600

Nonlinear systems: consider simple cubic nonlinear oscillator

i =—u’ u™t = 20" — " -T2
Verlet

Need a suitable robust design strategy...




Geometrical Numerical Integration

Structure-preserving numerical methods (symplectic, energy-conserving, etc.)

Numerical invariants are included by construction. Usually employed for strictly conservative systems

1
Example: SHO x = 2mf 01 é] X — H = E||x||2 = constant
Can build this conservation property into a numerical method:
SHO 4-894_4 Energy:12.500000000000004
Can go
@ H = 0: stored energy (])
Power balange: Q = 0: power lOSS (W)

P: input power (W)

A passive system. Transfer to discrete time - numerical stability




Energy Conservation and Numerical Stability

A very robust solution: numerical energy conservation to machine accuracy allows stable behaviour for a
wide range of complex systems. Schemes are “structurally dissipative”. For room acoustics, e.g.,

total energy=0.9329177614058952 ) stared. interal
‘ ‘ : T potential, internal

kinetic, internal

-stored, boundary

lost energy, boundary
- - - --|ost energy, interior

total energy

Joules

0.04 0.06
time (s)

<1075 variations in energy balance

0.04
time (s)




Nonlinear systems: Plate Vibration

) ) ) ) ) -4 B ws
Thin metallic structures: the basis for many percussion instruments (gongs, cymbals, Ji_ 00N
tamtams, etc.) e
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The Foppl-von Karman Equations

Energy:249.93849633827230J

Nonlinearity: N L(C(, B) = U xx ,Byy"' ayy ,Bxx'zaxy :Bxy
Wment: u(x, Y, t) Airy stress function: CI)(x, VY, l')

- 1 <2 p/ p/ 2 2 2

\_H:E us + k< (V-u)* + (V-®d)“do = constant

Can use our energy conservation framework - numerically stable method



Perspectives

Physical modelling synthesis and audio effects---possible to run large models in real time now.

Specialised designs (passive) necessary to cope with strong nonlinear effects

For future “black box” modelling, some useful constraints appear: state size, as well as
“passive” nature of recursive update.



