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Overview



Physics-based Audio vs. Data-centred Approaches

A distinguishing feature of physics-based audio: it is algorithmic, so no samples are used. 

• “pure” PM codes are tiny (kilobytes usually)…no “data”
• computational/memory costs: highly dependent on target system
• parameter sets: small. Sometimes hard to obtain! 
• can be extended to include samples (e.g., key clicks)
• always operate as recursions at an audio sample rate---feedback/IIR systems

No training: the deterministic mathematical model (and not the sound it generates) is the “ground truth”…

Distantly related to “procedural audio,” also algorithmic…

“Equation based” “Solution based”



Physics-based Audio
Idea: obtain high-quality “natural” acoustic sound through simulation. Main system families:

SynthesisEffectsVirtual Acoustics



System Overview

Virtual acoustics and mechanical effects: 

Loss: generally very low, but of high perceptual significance! “High-Q” oscillatory systems…
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Initial conditions: always zero in practice. Instead: physical models activated using external driving functions

Generally: coupled systems of differential equations



State Space Forms and Nonlinearities

Usually: breakdown of system into a significant linear part and an additional nonlinearity 

Nonlinear System

Audio 
Output

Control
Input

Nonlinear 
Excitation

Types of nonlinearity:

• polynomial (usu. cubic): geometric nonlinearity in strings, membranes, plates
• one-sided power laws: collisions (frets, snares, strikes, plucks, reed beating)
• square root (Bernoulli): wind instruments
• signum (Coulomb friction): bowed string instruments

Sometimes differentiable…sometimes not continuously differentiable, or even continuous. 

Nonlinear quasi-state space form:

Linear System



Classic Numerical Simulation Approaches
1962: vocal tract (Kelly + Lochbaum)
1970: FDTD string (Ruiz)
1979: mass spring networks (Cadoz)
1985: modal synthesis (Adrien + Rodet)
1986: digital waveguides (Smith)

Limited 
computational 
power
simplified 
physics…



Advances: Large-scale Instrument Models

1990s: musical acoustics investigations of complex 
instruments:

Timpani drum: Rhaouti, Chaigne + Joly, JASA, 1999

Very large computation…offline!

Mainstream time-domain methods---
finite difference time domain.

3D acoustic field modelling!



System Types

In sound synthesis and virtual acoustics, 
different manifestations:

Classic: Excitation/resonator interaction

Coupled Systems: Modular 
instrument construction

Multiphysics: Heterogeneous coupled 
systems

Complex Systems: Single problems with 
distinct timescales, or strong nonlinearities



10

Gallery



Wind Instruments
Coupled components: Main bore + 
bypass tubes (valves) or toneholes + 
excitation mechanism

Easily real time. Typical sounds…

(T. Mudd, “Brass Cultures”, 2020)



Guitars
Coupled components: 
strings + frets + fingers 
(+ body/acoustic field)

Real time (without 
body/field)

(G. Sassoon, “Multiverse”, 2021)



Room Modelling

At audio rates---a very large 
computational problem (offline 
on GPU only)

Industry standard: geometrical 
acoustics (e.g. ray tracing)---
neglects diffraction!  

Full wave-based solution is 
complete (audio rate). 



3D Percussion Instruments: Multiphysics
Multiple instruments “embedded” in acoustic field; multichannel (spatialized) output possible

Gongs: Timpani:



Building a Sound: the Snare Drum

Membrane only Membrane with snares With drum cavityTwo snare drums in a large room…
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Modular Environments

(G. Delap, “Orbit”, 2009)

Toolboxes for modular construction of 
new instruments…



Electromechanical Reverbs

Classic electromechanical reverbs---such as the spring:
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Case Study: String Vibration



String Models: Model parameter space

The simplest nontrivial physical model. Under lossless, linear, unforced conditions, system described by 
four “physical” parameters:

ρ: mass density T: tension r: radius L: length

ଶ

ଶ ଶ

ଶ

ଶ

Partial differential equation model: describes transverse displacement u(x,t) in time t, and spatial coordinate x:

But: this space is redundant…in fact, need only one “perceptual” parameter:

ଶ

ଶ
ଶ

ଶ

ଶ ଶ ଶ

Some “preparatory” work necessary in terms of scaling/nondimensionalization in order to get to the minimal 
parameter set. Esp. important if using ML methods for fitting parameters!



String Models: Control parameter space

The control aspect also requires a parameterization---much harder!

ଶ

ଶ
ଶ

ଶ

ଶ ௜
𝑥௜: excitation location
f(t): excitation function

Now: an entire function is 
required. 

Simple parameterized 
forms:

Pluck:

Strike:



Adding Stiffness

ଶ

ଶ
ଶ

ଶ

ଶ
ଶ

ସ

ସ
stiffness

pitch and timbre both change…



Losses
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଴ loss parameter ଵ frequency-dependent loss parameter



Example: nonlinear string vibration

linear

nonlinear
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amplitude-dependent 
nonlinearity



“With just one musician, you can really do an unlimited number of things on the inside of 
the piano if you have at your disposal an exploded keyboard.” (John Cage)

2-3 additional parameters required here…



Complete String Instruments

Parameter space: >200
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Computing



Time-stepping Methods

Time stepping methods: the classic way of proceeding. 

Many different approaches in different contexts: 

PDE system ODE system Update

• Finite difference time domain (FDTD)
• Finite volume time domain (FVTD)
• Finite element (FE), incl. discontinuous Galerkin methods, spectral element methods

Spatial 
discretisation

Time discretisation: 
time step T



Run-time Loop

x = A*x_last + b*u;
y = c*x;

x_last = x;

Suppose we have a linear system (very unrealistic!). Any physical modeling synthesis method will look like 
an audio rate recursion (state space):

for n=1:final_time_step

end

x:   the current “state.” 
u: input
A:   the “system.”
b: selects input location
c: selects output location

A key parameter: state size or # degrees of freedom N…determines computational cost!

Nonlinear case: update line above replaced by nonlinear algebraic equations to solve…

A, b, c generally extremely sparse (comes from “local” nature of physical laws)

x = f(x_last, u);
y = c*x;

x_last = x;

f(x, x_last, u) = 0;
y = c*x;

x_last = x;

Sometimes---can arrive at an “explicit” nonlinear update; can interpret as a large, possibly nonlinear IIR 
filtering operation…with major stability considerations!



Audio Rate Simulation

Need to capture all 
information up to fc = 20 kHz 

But: computational cost generally scales as (1/T)p for some integer p = 2,3,4…  fc = 20 kHz 

Bound on time step T:

T < 1/2fc = 25 μs

T  ≈ 1/2fc
Thus, ideally:

Some standard notions in simulation need to be viewed in this light…more later!



Computational Requirements and Factors

Many different factors at play when grappling with the question of computational efficiency:

State memory
Additional memory (coefficients, connectivity graphs)

Raw operation count
Linear systems: Sparsity? Other structure to be exploited? 
Nonlinear systems: iterative methods: stopping criterion + bit depth for audio?
Parallelizability
Single vs. double precision?



Weyl’s Law (1911)
A means of counting the number of degrees of freedom (twice number of “modes”) for a given system.

E.g., room, volume V m3, wave speed c m/s. 

Number of modes N of frequency < fc: ௖
௖
ଷ

ଷ

௖
௖
ଷ

ଷ

௖
ଶ

ଶ
BCs: lead to higher order effects (dep. on bounding area A):

Geometry independent



Audio-rate Simulation: Problem Sizes

Weyl’s Law: tells us # DOF N required, and thus minimal state memory requirement. Highly 
system/dimension dependent! To get to audio rate,

N

100 101 102 103 104 105 106 107 108 109 1010

String

Tube

Plate Rooms

Membrane

fc = 20 kHz

Implications for neural audio rate synthesis…



Order of Accuracy
A central concept in simulation design. Consider ODE system 

Simulation, with time step T, produces a time series ௡

Error ∝ 𝑇௣ p: Order of accuracy



Example: Simple Harmonic Oscillator

The most basic oscillatory system: the Simple Harmonic Oscillator (SHO): ଴

Solutions: pure sinusoids at frequency 𝑓଴. 

2nd order accurate method 
(Verlet)

4th order accurate method 
(classic Runge Kutta)Exact

𝑓଴ = 4 kHz: 

𝑓଴ = 1 kHz: 

Audio rate simulations with 𝑓௦ = 1/T = 44.1 kHz: 

Major implications for low-loss systems (most musical instruments and rooms…)



Numerical Instability
A major problem in audio-rate acoustic simulation…low loss, strong nonlinearities, long duration simulations.

Need a suitable robust design strategy…

Linear systems: spurious exponential solution growth:

Nonlinear systems: consider simple cubic nonlinear oscillator

ଷ ௡ାଵ ௡ ௡ିଵ ଶ ௡ ଷ

Verlet



Geometrical Numerical Integration
Structure-preserving numerical methods (symplectic, energy-conserving, etc.)

Numerical invariants are included by construction. Usually employed for strictly conservative systems

Example: SHO ଴
ଶ

Can build this conservation property into a numerical method:

Can go further: use a stored energy as a Lyapunov function:

Power balance:

A passive system. Transfer to discrete time  numerical stability



Energy Conservation and Numerical Stability
A very robust solution: numerical energy conservation to machine accuracy allows stable behaviour for a 
wide range of complex systems. Schemes are “structurally dissipative”. For room acoustics, e.g.,



Thin metallic structures: the basis for many percussion instruments (gongs, cymbals, 
tamtams, etc.)

At high vibration amplitudes: very strong nonlinear effects (crashes etc.)

low amplitude (linear) moderate amplitude high amplitude

Nonlinearity very different from in the case of electronic circuits…

Nonlinear systems: Plate Vibration



The Föppl-von Kármán Equations

Linear plate dynamics (Kirchhoff):

Nonlinear extension:

A highly nonlinear Hamiltonian system:

+ -2Nonlinearity:

Can use our energy conservation framework  numerically stable method

Transverse displacement: Airy stress function:



Perspectives

Physical modelling synthesis and audio effects---possible to run large models in real time now. 

Specialised designs (passive) necessary to cope with strong nonlinear effects

For future “black box” modelling, some useful constraints appear: state size, as well as 
“passive” nature of recursive update. 


