Sound examples from https://ccrma.stanford.edu/
~jos/waveguide/Sound_Examples.html


The 1D wave equation with a point source excitation \[ \frac{\partial^2 u}{\partial t^2} = \gamma^2 \frac{\partial^2 u}{\partial x^2} + \delta(x - x_F)\cdot f_\tau(t - t_F) \]
\[ \mathbf{U}[t_{+\Delta t}] = \left(2\mathbf{I} + \lambda^2\mathbf{D}_{xx} \right) \mathbf{U}[t] - \mathbf{U}[t_{-\Delta t}] + (\Delta t)^2 \mathbf{E}_{ii}\mathbf{f}[t] \]

Spectrum of the string with \(F_0=220\) Hz, output picked up at \(x=0.5\)
Forcing location \(x_F\)

Forcing onset time \(t_F\)

Forcing duration \(\tau\)
Find the optimal parameter \(\boldsymbol{\theta}^*\)
\[ \boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \left\|\mathbf{u}(\boldsymbol{\theta}) - \mathbf{\hat{u}}\right\| \]
that can reproduce the target observation.

Two observation positions
Different initializations on the parameters, subject to a single observation
Find the optimal \(\phi^*\) that \(\boldsymbol{\theta}\sim\boldsymbol{q}_{\phi^*}\)
\[ \phi^* = \arg\min_{\boldsymbol{\phi}} \mathbb{E}_{\theta\sim\boldsymbol{q}_{\phi}}\left\|\mathbf{u}(\boldsymbol{\theta}) - \mathbf{\hat{u}}\right\| \]
\(q_\phi\): parameter sampler (distribution generator)
Reparameterize \(\boldsymbol\theta=\boldsymbol\mu + \boldsymbol\sigma\cdot\boldsymbol\epsilon\) where \(\boldsymbol\epsilon\sim N(\mathbf{0}, \mathbf{I})\)

Two observation positions, sample eight \(\theta\)-s every iteration
One observation position, optimize two distribution modes


https://bit.ly/ismir-pm-pt4-notebook
https://ismir-physical-modeling.github.io/ in your browser,</> Notebook.